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HEATING OF A COMPRESSIBLE LIQUID

BY A CONSTANT HEAT FLUX

UDC 537.84G. V. Belyakov1 and A. A. Charakhch’yan2

Several variants of the problem of heating a compressible liquid by a time-independent heat flux are
numerically studied. It is shown that, after a certain time, the pressure everywhere behind the shock
wave differs only little from some constant value. Approximate analytical formulas are obtained,
which demonstrate independence of pressure of thermal conductivity and some other features of the
relation between the pressure and the heat-flux intensity. Several examples are given, which confirm
the adequacy of formulas to numerical solutions of the problem.
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Introduction. The one-dimensional problem of substance heating, posed for the heat-conduction equation
without substance motion, has been well studied. This problem admits a self-similar statement for a broad class
of boundary conditions and temperature dependences of thermal conductivity [1]. The problem with substance
motion has been studied less extensively; here, only one self-similar solution for a particular boundary condition
and thermal conductivity–temperature relation is known [2]. In [2], the distributions of propagation velocities of
heat and shock waves were qualitatively compared. Presently, it is an easy matter to numerically solve the problem
for given values of parameters. This, however, does not cancel the importance of analytical formulas, which allow
an explicit representation of flow characteristics on problem parameters.

In the present study, we examine an important particular case of substance heating by a time-independent
heat flux, which admits an analytical formula for one of the main characteristics of the flow. The interest in this
problem is related to modeling of substance heating by friction, which will probably make it possible to explain
specific features of one experiment on shock compression of an aluminum plate on a wedge. That is why the main
example used to test the accuracy of the derived formula is somewhat exotic. We consider high-pressure aluminum
melt that arises behind the front of an attached shock wave when the plate undergoes jetless compression with a
4-km/sec velocity (see [3]). We use tabulated broad-range equation-of-state data for aluminum reported in [4]. In
addition, the formula is tested with the perfect-gas equation-of-state problem. For definiteness, parameters close to
those of air are used.

Statement of the Problem. Approximate Formula. A plane one-dimensional flow of a compressible
heat-conducting liquid is governed by the equations
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where x is the spatial variable, t is the time, u is the velocity, ρ is the density, p is the pressure, ε is the specific internal
energy, T (x, t) is the temperature, d/dt = ∂/∂t+ u∂/∂x is the Lagrangian time derivative, and æ = æ(ρ, T ) is the
thermal conductivity. Equations (1) are closed by the equations of state p = p(ρ, T ) and ε = ε(ρ, T ). The liquid
occupies the half-space 0 6 x < ∞. At the time t = 0, the liquid is stationary, and the thermodynamic variables
are constant: ρ = ρ0, T = T0, p = p0 = p(ρ0, T0), and ε = ε0 = ε(ρ0, T0). At the boundary x = 0, the symmetry
condition u = 0 is posed and a constant heat flux q is specified:

−æ
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Setting u ≡ 0 and ρ ≡ ρ0 in the last equation of system (1), we obtain the heat-conduction equation
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We will call problem (3), (2) with the initial condition T (x, 0) = T0 the thermal problem. It is of interest to find
its solution over a finite time interval 0 6 t 6 t∗. Assuming the coefficients Cv and æ in Eq. (3) to be almost
unchanged in this interval, we replace them with their constant values Cv0 = ∂ε(ρ0, T0)/∂T and æ0 = æ(ρ0, T0).
This problems admits the well-known self-similar statement [1]. Its solution has the form

Th(x, t) = T0 +
√
tA
[

exp(−η2)− 2η

∞∫
η

exp(−β2) dβ
]
,

A = 2q
√
χ/(æ0

√
π ), η = x/(2

√
χt ), χ = æ0/(Cv0ρ0).

(4)

Here η is the self-similar variable and χ is the thermal diffusivity.
Following [2], we introduce the heat-wave velocity ẋh and the shock-wave velocity D. Using the approximate

solution of the thermal problem (4), we define the velocity ẋh as the velocity of a point with a fixed self-similar
variable η = η0:

ẋh = η0

√
χ/t. (5)

Since ẋh →∞ as t→ 0 and ẋh → 0 as t→∞, the condition ẋh = D defines a certain time t∗. We assume
that, from the time t∗ on, the shock wave leaves the heat wave behind and propagates in an undisturbed liquid.
We perform the change of variables D = Mc0 (M is the shock-wave Mach number and c0 is the velocity of sound in
the undisturbed liquid); then, by virtue of Eq. (5), we have

√
t∗ = η0

√
χ/(Mc0). (6)

An analysis of the calculations results presented below shows that the solution of problem (1), (2) possesses
the following property. After the shock wave is established, the pressure everywhere behind its front differs only
little from a characteristic pressure p∗, which is independent of x and t. In particular, this means that the shock-
wave velocity D and the parameters immediately behind the shock-wave front, which can be uniquely determined
from the pressure behind the front, only weakly depend on t. A substantial difference from the work [2], in which
the dependence D(t) was assumed to be the same as the time dependence of the interface temperature, i.e., D ∼

√
t,

deserves mentioning. Another important consequence of the weak time dependence of pressure consists in the fact
that, as the interface temperature increases, it closely follows the isobar p = p∗. Hence, if the pressure p∗ is known,
it is possible to estimate the temperature of vaporization beginning from the intersection point of the isobar and
the vaporization curve in the plane of thermodynamic variables.

To find p∗, we use the following two assumptions. First, we assume the interface temperature T (0, t) to differ
little from Th(0, t) till the time t∗. Substituting (6) into (4), we obtain

T∗ = Th(0, t∗) = T0 +
2qη0√

πρ0Cv0c0M(p∗)
. (7)

The dependence M(p∗) is determined by the shock adiabat for the wave, that propagates in the undisturbed liquid,
with the pressure behind its front equal to p∗. Second, we neglect the difference between the density at the interface
at the time t∗ and the initial density ρ0, which allows us to define p∗ by the formula

p∗ = p(ρ0, T∗), (8)

which, together with (7), yields an algebraic equation for p∗.
Formulas (7) and (8) allow two important conclusions to be drawn concerning the manner in which the

pressure p∗ depends on problem parameters:
1) p∗ is independent of the thermal conductivity æ0, although the solution of problem (1), (2) and, in

particular, the time t∗ substantially depend on æ;
2) p∗ increases with increasing q.

For weak shock waves (M ≈ 1), the temperature increment is (T∗ − T0) ∼ q, which gives (p∗ − p0) ∼ q for the
perfect-gas equation of state. For strong shock waves, we have M(p∗) ∼

√
p∗. Assuming that T∗ � T0, we obtain

p∗ ∼ q2/3 for the perfect-gas equation of state.
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Fig. 1. Distributions of p and u (a) and T and ρ (b) at the time t = 6 nsec for aluminum (q =
3 GW/cm2).

TABLE 1

q, GW/cm2 p∗, GPa p̄b, GPa p̄b10, GPa p̄s, GPa p̄s10, GPa Tv , 103 K Tv∗, 103 K M(p∗)

3 63.2 62.8 63.5 63.5 63.6 141 141 1.01
30 82.3 81.9 81.9 88.1 88.2 159 161 1.07
90 115 111 112 125 126 184 189 1.20

Comparison of Formulas (7) and (8) with Numerical Calculations of Problem (1), (2). Below,
we present the calculation data for problem (1), (2) obtained to test the accuracy of formulas (7) and (8). Here,
the matter of adequacy of mathematical models to actual physical processes is left aside. Everywhere, if not stated
otherwise, the numerical coefficient in (7) is η0 = 1.

We consider heating of liquid aluminum with the initial data p0 = 60 GPa, ρ0 = 3.5 g/cm3, and T0 ≈ 3600 K.
The heat flux q varies from 3 to 90 GW/cm2. (The choice of the maximum value of q is motivated by the restricted
volume of available tabulated equation-of-state data for aluminum.) For T 6 105 K, for the thermal conductivity of
aluminum, we use the model [5] of electrical conductivity based on some experimental data and the Wiedemann–
Franz law (see [6]). The thermal conductivity at higher temperatures (T > 105 K) is calculated by the formula
æ(ρ, T ) = æ(ρ, Tc)(T/Tc)5/2, where Tc = 105 K.

Figure 1 shows the distributions of p, u, ρ, and T along the x axis for q = 3 GW/cm2 at t = 6 nsec. The
coordinate xs ≈ 0.06 mm corresponds to the position of the shock-wave front, where the largest pressure difference
is observed. The heat wave, at whose front the greatest changes in temperature and density occur, have passed a
much shorter distance (xh ≈ 0.002 mm). The pressure in the heat-wave region is almost uniform, and it gradually
increases in the region between the heat and shock waves.

Figure 2 shows the time dependences of the interface pressure pb(t) = p(0, t) and the pressure behind the
shock-wave front ps(t) gained for the same conditions. Initially, both pressures increase to an almost identical value
and then slowly decrease. The function ps(t) decreases much more slowly than pb(t). The same figure shows the
pressure p∗ calculated by formulas (7) and (8). The pressure p∗ is seen to be a good approximation for ps(t),
representing a mean value of pb(t).

Table 1 compares the calculation results for problem (1), (2) with p∗ and with the vaporization temperature
Tv∗ calculated as the intersection point of the isobar p = p∗ and the vaporization curve found with an accuracy
to the step of the tabulated equation-of-state data used. The same approximate vaporization curve was used to
determine the temperature of vaporization beginning Tv in the solution of problem (1), (2).
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Fig. 2. Time dependences of interface pressure and
pressure behind the shock-wave front: 1) pb, 2) ps;
the dashed curve shows the pressure p∗ calculated by
formulas (7) and (8).

To quantitatively compare the pressure p∗ with the functions pb(t) and ps(t), these functions were averaged
by the formula

p̄ =
1

tmax − t0

tmax∫
t0

p(t) dt,

where tmax is the maximum time till which the evolution of the system was traced and t0 is the time at which
the dependence p(t) attains its maximum. The resultant quantities are denoted as p̄b and p̄s (see Table 1). The
designations p̄b10 and p̄s10 are used for the respective mean values for problem (1), (2) with tenfold increased thermal
conductivity æ. Almost for all variants, the calculations were conducted till the vaporization started. The only
exception is the variant with q = 3 GW/cm2 and tenfold increased æ, in which case the calculation till vaporization
beginning would require a much greater number of time steps. Nevertheless, the time tmax in this case was almost
the same as in the case without increased æ.

First of all, it should be noted that the pressure obtained from the solution of problem (1), (2) is almost
independent of thermal conductivity, which is in line with formulas (7) and (8). Simultaneously, other functions
essentially depends on æ. For instance, the interface temperature at the time t = 6 nsec (see Fig. 1) is T (0, t)
≈ 9 · 104 K. For the tenfold increased æ, the calculations yield T (0, t) ≈ 3 · 104 K.

The values predicted by formulas (7) and (8) agree well with the data obtained by numerical calculations.
As q increases by 30 times and p∗ by a factor of two, the mean values of pressure deviate from p∗ within 10%; for
the vaporization temperatures, this deviation is within 3%.

As is evident from the last column of Table 1, the variants of problem (1), (2) described above correspond
to the case of weak shock waves. In the case of strong shock waves, the accuracy of formulas (7) and (8) was
tested on problem (1), (2) with the perfect-gas equation of state ε = p/(ρ(γ− 1)), where p = RρT (for definiteness,
the constants γ and R were taken to correspond to deionized air). The thermal conductivity was assumed to be
constant, æ = æ0 = 4.2 · 10−4 W/(cm ·K) or æ = 10æ0, where æ0 is close to the corresponding value for cool air.
The initial data are p0 = 1 atm and ρ0 = 1.205 · 10−3 g/cm3.

Figure 3 shows the dependences ps(t) and ps(t) for the variant with q = 30 MW/cm2. Unlike the case
of aluminum, both functions are monotonically increasing and close to each other. This means that the pressure
everywhere behind the shock-wave front is almost independent of x. As t → ∞, both functions tend to a certain
value p∞. A tenfold increase in æ affects the time dependence of pressure, but the value of p∞ remains unchanged,
similarly to the case of aluminum and in line with formulas (7) and (8).
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Fig. 3. Time dependence of interface pressure and
pressure behind the shock-wave front for air (q =
30 MW/cm2): the solid and dashed curves refer to pb
and ps, respectively, for æ = æ0 (1) and 10æ0 (2).

TABLE 2

Variant No. q, MW/cm2 p∗, MPa p∞, MPa M(p∗)

1 30 26.5 22.06 15.0
2 300 122.6 102.1 32.4

Table 2 contains the values of p∞ and p∗ for two values of q differing tenfold from each other. The difference
between p∞ and p∗ does not exceed 20%. The accuracy provided by formulas (7) and (8) seems to be satisfactory
since, for various values of q, the pressures in Table 2 differ by a factor of 4.5. Note that formulas (7) and (8) are
accurate to the numerical factor η0. The values of p∗ given in Table 2 are obtained for η0 = 1. A proper choice of
η0 makes it possible to improve the accuracy of formulas (7) and (8); this is confirmed by the example given below.
If, in variant No. 1 (q1 = 30 MW/cm2), we choose the value of η0 so that to make the pressure p∗ be coincident
with p∞ within the accuracy to three decimal digits, then the pressure p∗ in variant No. 2 (q2 = 300 MW/cm2) will
also coincide with p∞ within the accuracy to three decimal digits. This means that the error of formulas (7) and
(8) is smaller than 1%. The relation p∗ ∼ q2/3 for strong shock waves obtained above from the analysis of formulas
(7) and (8) also holds within a 1% error. For the values indicated in Table 2, we have

(q2/q1)2/3 ≈ 4.64; p∗2/p∗1 ≈ p∞2/p∞1 ≈ 4.63

(the subscripts 1 and 2 refer to the variant number in Table 2).
Conclusions. All of the variants of problem (1), (2) considered demonstrate good agreement between the

pressures obtained from the numerical solution of the problem and the pressures calculated by formulas (7) and (8).
The pressure is almost independent of thermal conductivity. The only exception is the initial time interval over
which the pressure rises. As the heat flux increases, the pressure grows in value. In the case with aluminum, the
error in determination of pressure is within 10%, and the error in determination of the temperature of vaporization
beginning is within 3%. In the case with a perfect gas, a proper choice of the numerical coefficient η0 makes it
possible to reduce the error of formulas (7) and (8) to less than 1%.

In addition to the problem with a time-independent heat flux, we also considered the problem of heating of
melted aluminum with a heat flux varying in proportion to the interface pressure:

q = q0pb(t)/p0, q0 = const.

The calculations showed that, in the latter problem, the pressure behaves similarly to the case with q = const. The
characteristic pressure p∗ can be found from formulas (7) and (8) with q replaced by the dependence q̄(p∗), which
determines an appropriate mean value of q from the interval p0 6 pb 6 p∗. The dependence q̄ = q0(0.25+0.75p∗/p0)
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ensured a lower than 1 K error in determining the temperature of vaporization beginning Tv by formulas (7) and (8)
for q0 = 30 and 90 GW/cm2. It should be emphasized that the high accuracy in determination of Tv by no means
implies that the pressures p∗ and p0 lie close together, since p∗ ≈ 90 GPa for the first value and p∗ ≈ 160 GPa for
the second value of q0, which is higher than p0 approximately by a factor of 1.5 and 2.5, respectively.

Finally, the reader should be forewarned against formal using of the derivation methods of formulas (7)
and (8) for problems with boundary conditions other than (2). As an example, we consider the problem with the
boundary condition

T (0, t) = T0 + βt (β = const). (9)

The solution of the corresponding thermal problem with constant coefficients is a function of the same self-similar
variable on which solution (4) depends. Hence, formulas (5) and (6) remain unchanged. Inserting t∗ from Eq. (6)
into Eq. (9), we obtain T∗ and then, as previously, use formula (8) to find p∗. Figure 4 shows the value of p∗ thus
obtained and the interface pressure pb(t) for β ≈ 4.3 ·1014 K/sec. It is seen that, in the case of interest, the pressure
p∗ bears no relation to the function pb(t).
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